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ABSTRACTIn this paper we explore the pratial possibilities of usingformal methods to analyze gossiping networks. In partiu-lar, we use �CRL and Groove to model the peer samplingservie, and analyze it through a series of model transforma-tions to CTMCs and �nally MRMs. Our tools ompute theexpeted value of various network quality indiators, suhas average path lengths, over all possible system runs. Bothtransient and steady state analysis are supported. We om-pare our results with the simulation and emulation resultsfound in [10℄.
1. INTRODUCTIONGossiping networks provide a novel way of onstrutingdistributed systems. A gossiping network onsists of a largenumber of simple nodes, whih have a limited view of thenetwork. The idea is that information is dissipated in a gos-siping style, i.e. every node ommuniates its informationto a small number of other nodes in the same way peoplespread gossip through a ommunity. This style of ommu-niation is also alled epidemi for its similarity to a diseasespreading through a population. Gossiping networks havebeen used suessfully in a number of appliations (for anoverview see [6℄).In [2℄ the use of formal methods is proposed to analyze thebehavior of gossiping networks. The advantage is that for-mal methods are preise and the results are traeable (i.e.performane problems an be traed bak to spei� de-sign deisions). The disadvantage of formal methods is thatthey rarely sale. As the size of the system under analysisis inreased, the models grow exponentially. Another prob-lem is that a system may be too omplex to model usinga partiular formalism. First, a gossiping network is inher-ently dynami, beause nodes may enter or leave the system,and their onnetions vary over time. Furthermore, gossip-ing network models ombine onurreny and probabilistibehavior in a timed setting, whih leads to modeling andanalysis ompliations.In this paper, we will use formal methods (in the form ofexpliit state model-heking) to analyze gossiping networks.Our main goal is to experiment with preise, expliit-state,formal models and to investigate the potential and the lim-itations of this approah. In partiular, we want to answerthe following questions:� Is it possible to model the omplex nature of gossipingnetworks using formal methods?� How well does expliit state model-heking sale?

� Are the { possibly small sale { results useful in makingdesign deisions?To investigate the �rst question, we model the peer sam-pling servie of [10℄ using the �CRL [4℄ tool-set, whih sup-ports the use of omplex data-types. The entral hallengeis to model a dynamially hanging network using statidata-types. The �CRL spei�ation is then transformed toa labeled ontinuous-time Markov hain, by ombining on-urrent, probabilisti and stohasti behavior along the linesof the MLotos proess algebra [9℄. We then perform analy-sis (on a normal modern workstation) to see for whih sizesystem we an still generate expliit-state models. Finally,we ompare our results with the simulation and emulationresults from [10℄ to see if we an detet the same interest-ing phenomena using formal methods as are observed whenemploying simulation and emulation.Obviously, any omplete expliit state method an onlyhandle relatively small networks. Symmetry redution ispartiularly interesting in the setting of gossiping networks,as it abstrats individual node identities and instead looks atthe overall struture of the network (in terms of the onne-tions between the nodes). We explore symmetry redutionfor gossiping networks by using the Groove tool [15℄. Thistool utilizes graph transformations and is therefore ideal forthe desription of the behavior of gossiping and other dy-nami networks. Furthermore, sine Groove handles graphsmodulo isomorphism, it automatially abstrats individualnode identities. The results obtained in this way are stillomplete and preise. However, it is learly desirable in thefuture to also use some form of abstration to ounter thestate-spae explosion problem even more drastially [2℄.The paper is organized as follows. Setion 2 desribes gos-siping networks. Setion 3 gives an overview of the di�erentformalisms used in this paper. Setion 4 desribes how weused these formalisms to model gossiping networks. Theanalysis of the gossiping network models is then explainedin Setion 5. Then the results of the analysis are given inSetion 6. Finally, we disuss the possible avenues for futurework in Setion 7 before onluding the paper in Setion 8.
2. GOSSIPING NETWORKSOne of the primary uses of networks is the distribution ofinformation from and to the onstituent nodes. Tradition-ally, speial network nodes, known as servers, are designedto be responsible for this distribution; other nodes are thenalled lients. The drawbak of the lient-server approahis that the servers alone are responsible for the proper fun-tioning of the whole network. Therefore, this approah does
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not sale well and is unsuitable for very large or dynaminetworks with high performability requirements [17℄.An elegant alternative was found by abandoning the ideaof a entral server oordinating the proper funtioning [5℄.All nodes then behave aording to some simple algorithmand, hopefully, the proper network behavior emerges spon-taneously without any one node being responsible for theorretness of the entire network. This approah mimisthe way a group of people spread gossip. No single persontakes it upon him or herself to ollet all gossip and dis-tribute it to everyone, yet beause people naturally sharethe gossip they know, it an be expeted that in the longrun everyone knows everything about everybody. Beauseof this similarity, these networks are referred to as gossipingnetworks (or epidemi networks, beause the way informa-tion is spread throughout the network also mimis the waya disease spreads throughout a population during an epi-demi) [5℄.In the absene of a entral server, the nodes of a net-work must themselves aquire and maintain knowledge ofthe struture of the network. This is the responsibility ofthe so-alled peer sampling servie. The idea is that thenodes ontinuously exhange information about the nodesthey know about. The goal of this behavior is to maintain awell-balaned network as this greatly improves the reliabil-ity and eÆieny of the network. In [10℄ it is assumed thateah node knows only a small number of its peers (the setof peers known to a node is known as its view, whih hasa maximum size). The ative behavior of a node is then asfollows:1. It selets a peer from its view;2. It selets what part of its view it will send;3. It sends this subview and reeives a subview in return;4. It merges the reeived subview with the original view;5. It prunes exess peers from its view, if neessary.There are several parameters in this protool:� The ommuniation poliy (step 3): push, pull or both(push-pull). This refers to ases where, respetively,only the ative node sends its view, only the passivenode sends its view, or both nodes send their views.In this paper we study the di�erenes between thesepoliies.� The seletion of peers to ommuniate, view to sendand peers to prune (steps 1, 2 and 5), whih an bebased on the age of the links in the network (being thetime sine the last ommuniation between the twonodes). In this paper we ignore all age parameters:peer seletion and pruning are done at random (withan equal probability for eah possible hoie), and al-ways the entire view is sent.Gossiping networks are diÆult to analyze due to their sizeand the many di�erent parameters. Furthermore, we an-not analyze the nodes in isolation (a tehnique whih is use-ful in analyzing lient-server systems) as we are spei�allyinterested in behavior that emerges in (large) networks ofnodes. So far, mostly simulation and emulation have beenused [10℄, but this has a number of drawbaks. Simulationrelies heavily on the auray of the simulation models usedand an only give results in the form of on�dene intervals.

Emulation on the other hand is very ostly and the pre-ise interpretation of the results is often obsure, i.e. whensomething interesting happens it is diÆult to �nd out whataused this event. Finally, both simulation and emulationstruggle to �nd so-alled rare events, i.e. events that have avery low probability to happen (suh that they rarely hap-pen in simulation/emulation), but are still ommon enoughto ause great problems during the operation of the network.As a �rst start we study a simple version of the gossipingprotool as desribed in [10℄ where peer seletion and viewseletion are always random. Methods to implement otherpeer seletion and view seletion strategies are disussed inSetion 7.
3. FORMALISMSIn this setion, we desribe the formalisms used in themodeling and analysis of gossiping networks. For the sakeof brevity we keep the desriptions short and refer to othersoures for more detailed information about the formalisms.Figure 1 shows how these formalisms have been hained to-gether for the purpose of this paper.
3.1 mCRL�CRL [4℄ ombines proess algebra (in the style of the al-gebra of ommuniating proesses, ACP [3℄) with abstratdata types. From proess algebra, it inherits operators like+ (alternative hoie), � (sequential omposition) and jj (par-allel omposition). Normally, parallel proesses interleavetheir ations in an asynhronous way. When spei�ed expli-itly, parallel proesses an synhronize on spei� ations.The data part is used to model the state of a reursiveproess (X(s) = p[X(s0)℄), onditional branhing (p / b .q) and to desribe the data ommuniated by synhro-nized ations (send(m)). The possibly in�nite summation(Px:N read(x)) is used to model the input of an arbitraryx : N , where N is a possibly in�nite set of values.
3.2 GrooveGroove [15℄ is a tool for the veri�ation of graph trans-formation systems. A Groove spei�ation is a set of graphtransformation rules, eah of whih onsists of a left handside (LHS) and a right hand side (RHS). The e�et of a ruleis given by the \di�erene" between LHS and RHS; in par-tiular, nodes and edges an be added or removed. A rule isappliable to a graph wherever the graph ontains an imageof the LHS; applying the rule essentially means replaingthe LHS image by a opy of the RHS.Given a rule system and an initial graph, a model of thebehavior is obtained by exploring all rule appliations re-ursively to the initial graph and all resulting new graphs.This gives rise to a transition system in whih the statesare graphs and the transitions are rule appliations. Hene,to model the behavior of a given system, all relevant infor-mation, inluding the data strutures, should be enodedinto the initial graph, by means of nodes and edges, and alldynami steps should be enoded as graph transformationrules.A speial feature is that states are ollapsed modulo graphisomorphism; in other words, Groove performs automatisymmetry redution (see [16℄). This turns out to be of greatadvantage in for the gossip protool, sine this ontains avery large degree of symmetry.
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�CRLGROOVE CTMC MRM ResultsInterpretInterpret Calulation Model hekingFigure 1: The analysis trajetory.
3.3 Continuous-time Markov chainsContinuous-time Markov hains are a lass of stohastiproesses with a disrete state spae, where state transitionsour after time-delays governed by negative exponentialdistributions (for an overview of CTMCs and other Marko-vian models see [8℄). A CTMC an be embellished with alabeling funtion whih labels eah state with a set of logialpropositions. We all the resulting model a labeled CTMC.In our ase, the states of the CTMC are labeled with diretedgraphs representing the state of the gossiping networks, butit is obvious that a direted graph of bounded size an beenoded as a set of propositions.
3.4 Markov reward modelsA Markov reward model is a CTMC augmented with a re-ward struture assigning a real-valued reward to eah statein the model [1℄. We use this reward struture to measureseveral quality indiators of the gossiping networks: the vari-ane of the indegree of the nodes, the average length of theshortest path between every possible ombination of nodesand the lustering oeÆient (see [10℄ and Setion 5).We are interested in alulating the expeted value ofthese measures at ertain time-points as well as the expetedvalue of the measures in the long run. We an alulate thisby implementing the possible extension to CSRL �rst men-tioned in [1℄ and implemented in [11℄. The instantaneousreward orresponds to the expeted value of a measure at aertain time point. The instantaneous reward at time pointt is alulated by summing up, for all states s, the produtof the probability of being in s at time-point t (transientprobability) and the reward of s. The expeted reward rateorresponds to the long-run expeted value of a measure.The expeted reward rate an be alulated by summing up,for all states s, the produt of the long-run average proba-bility (steady-state probability) of being in state s and thereward of s.
4. MODELINGIn this setion, we desribe how we modeled gossipingnetworks. First, an abstrat overview of the behavior of anode in a gossiping network is provided. Next, the assoi-ated �CRL spei�ation is given. Finally, we desribe howwe modeled the gossiping networks using the graph trans-formation tool Groove.
4.1 Abstract modelThe state of one node in our gossiping network is desribedby its view, i.e. the other nodes it knows about, and itsinternal state. Suh a view is modeled simply as a set ofnodes. The behavior of a node is divided into an ative and apassive \thread", following [10℄. A shemati representationof the di�erent internal states of a node using the push poliyan be seen in Figure 2.

S wait selet peer (1)send (3)reeive/merge (3,4)prune view (5) Stohasti delayProbabilisti hoieConurrent ationFigure 2: Shemati of the behavior of a gossipingnetwork node using the push poliy.Initially, a node is in its stable state (marked S in Fig-ure 2). After a stohasti delay (the wait transition in Fig-ure 2) the node may move to its ative thread. At thispoint the protool desribed in Setion 2 starts: in its a-tive thread the node randomly selets a peer (with equalprobability, step 1), sends its view (augmented with its ownidentity) to the seleted peer (step 3) and returns to its sta-ble state. The seleted peer reeives this view in its passivethread, provided it is in a stable state, and merges it withits own view (steps 3 and 4); it then prunes the merged viewrandomly to a orretly sized subset (with equal probability,step 5). After this view seletion the node returns again toits stable state.The pull poliy is similar, exept that here the ativethread, after seleting a peer, requests the view of that peer,merges it with its own view, and trunates it randomly. Fi-nally, in the push-pull behavior, views are exhanged in bothdiretions.A full network onsists of N suh nodes, working in par-allel. It is important to understand that if all nodes are ina stable state, any node ould start the ative thread, andselet potentially any other node. So for an N node networkthere are N(N � 1) potential ontinuations (limited only bythe atual ontents of the views).A major issue in any onurrent setting is how the eventsof di�erent nodes are ordered. In [10℄ a round-robin sheduleis assumed: in every round, every node ats exatly one.However, suh an ordering would require a entral author-ity (at least a global lok), whih makes sure that eahnode ats at the appropriate time. But the lak of a en-
9



tral authority is one of the prinipal properties of gossipingnetworks so we �nd this assumption too restritive. In thispaper we assume that all nodes at after a stohastiallydistributed delay. The delay distributions of the nodes areidential, but independent. This means that the nodes areall expeted to at at the same rate, but the independenemeans that there is no need for a entral authority. In thismodel rare ourrenes, suh as a single node ating muhfaster than the other nodes for a period of time, are possibleeven though they will have an extremely small probability.Suh rare ourrenes are generally diÆult to detet usingstandard simulation or emulation tehniques.There ould be onern that a model omposed of severalnodes might deadlok. Spei�ally, this would happen if twonodes would simultaneously enter their ative threads andattempt to ommuniate with eah other. Both nodes wouldthen be stuk waiting for the other node. To avoid suh sit-uations, the ative and passive threads must somehow runatomially. This an be modeled by the maximal progressassumption [14℄, i.e. all internal behavior ours immedi-ately. In pratie, this means that all ommuniation andview-updating ations have priority over the stohasti de-lay. This an also be explained stohastially: Sine theWait delays are drawn from ontinuous distributions theprobability that two timers expire at the same time is zero.If internal omputation times are negleted, the probabil-ity that another timer expires during internal omputationis also zero. Hene we may safely assume that the passivethreads are always ready to reeive information.The stohasti delay Wait is assumed to be governed bya negative exponential distribution and is thus modeled asa ontinuous-time Markovian transition. In reality, how-ever, the delay ould be implemented as a deterministi de-lay. This an be approximated using an Erlang distribution.Suh an Erlang distribution would onsist in our model ofa hain of identially distributed exponential distributions,i.e. a hain of Markovian transitions. To improve the au-ray of the approximation we need to inrease the numberof phases in the Erlang distributions, i.e. we must make thehain longer. This, however, exponentially inreases the sizeof the network model. We have not experimented with thisin our analysis.
4.2 mCRLUsing the �CRL language, we modeled eah node as aseparate proess. The state parameters of eah node denoteits identity and its urrent view. Nodes are omposed inparallel, and ommuniate by sending/reeiving views. Forthis, we introdue expliit send and reeive ations, whihsynhronize atomially (handshaking). Complex operations,like merging views and seleting subviews, are spei�ed byequations in the abstrat data part.In order to model one exhange (inluding pushing andpulling views) in the protool atomially, we speify syn-hronized send- and rev-ations with four arguments asfollows:send(i; j; v; w) denotes that (the ative thread of) node ipushes view v to (the passive thread of) node j, andpulls view w from it.rev(i; j; v; w) denotes that (the passive thread of) node jreeives view v from (the ative thread of) node i, andsends view w to it.

In order to model non-deterministi strategies for peerseletion and view seletion, we inlude two prediates:peerselet(v; p) : given urrent view v, it is possible toselet p from it for the next ommuniationviewselet(v; u) : given a view v, it is possible to seletthe subview u from it.Given all these ingredients, a node with identity i andurrent view v, and having two threads, an essentially bemodeled as follows:Node(i : Id; v : V iew) =
Pj:IdPw:V iewPu:V iew send(i; j; v; w) �Node(i; u)/ peerselet(v; j) ^ viewselet(merge(v;w); u) . Æ+ Pj:IdPw:V iewPu:V iew rev(j; i; w; v) �Node(i; u)/ viewselet(merge(v;w); u) . ÆA network with three nodes and node 2 in the enter is thenmodeled as:Node(1; f2g) jj Node(2; f1; 3g) jj Node(3; f2g)In fat, we used a slightly more ompliated model: a delayation is added; the peer selet and view selet transitionsare expliitly modeled as internal transitions; node i is prop-erly added to v and deleted from w; all datatypes, inlud-ing the seletion prediates, must be spei�ed in full detail.The atual model that we used is parameterized over thepull/push poliy, the sizes of the network and the view, andover the initial on�guration. We were also able to speifypeer and view seletion strategies based on hop ounters,but these models have not been analyzed in detail.Note that we relied on the strong data spei�ation apa-bilities of �CRL. However, �CRL has no notion of proba-bilisti hoie, or stohasti time. So, as one an see abovethe hoie of peer seletion and view seletion are modeledas non-deterministi hoie in �CRL. In order to model thedelays, the send-ation is preeded by an ation \delay".Only after generating the state spae, the other tools in thetool hain interpret \delay" as stohasti delay. Also, theyinterpret non-deterministi as equiprobable hoie.The behavior of the gossiping network is now de�ned asthe parallel omposition of the behaviors of its onstituentnodes. The maximal progress assumption is implementedby giving all other transitions priority over the delay a-tion. The state spae of this network basially onsists ofthe views of all nodes. If we interpret the peers in the viewof a node as its neighbors in a direted graph, then eahstate in the behavior of the network is labeled by a diretedgraph. In Setion 5, we will see how we transform this be-havior to a Markov reward model and how we then analyzeit to ompute interesting measures for the network.

4.3 GrooveThe Groove model of the gossiping network diretly en-odes the struture of the network as a graph, with networknodes as graph verties and their view as a set of outgo-ing edges. In addition, the model inludes some auxiliaryverties and edges to ontrol the behavior. An example ini-tial graph, for a network of size 5 with initial view size 2organized in a ring struture is given in Fig. 3.The Groove model does not inorporate the notion of om-muniating proesses. Instead, the essential steps of pushing
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Figure 3: Start graph for the Groove modelElements MeaningThin blak Present in the graphWide dashed Absent in the graphMedium gray Added to the graphDotted Universally quanti�edFigure 4: Rule \pull": link edges are added to theative node for all links known to the passive node.and pulling the views from one node to another are eah ap-tured by a single rule, whih inorporates at the same timethe role of the ative and the passive node. For instane,the rule for pulling is displayed in Fig. 4.Together with rules for hoosing the ative and passivenodes and for \leaning up" afterwards, this forms a smallprotool like the one displayed in Fig. 2 for mCRL, withas main di�erene that there are no separate \send" and\reeive" ations; rather, these are ombined in the \pull"and \push" rules.
5. ANALYSISIn this setion, we desribe how we analyze the �CRLand Groove models desribed in the previous setion. Thisanalysis follows the trajetory of Figure 1. We also disussthe omplexity of our approah, both in terms of the size ofthe models and the time needed to analyze the models.
5.1 From mCRL/Groove to CTMCIn Setion 4, we have seen that the �CRL and Groovemodels ontain ontinuous stohasti delays and disreteprobabilisti transitions. Following the strategy for theMLotos proess algebra [9℄ we interpret the �CRL andGroove models as labeled CTMCs.Let's �rst onsider what a �CRL or Groove model of agossiping network looks like. The �CRL model is gener-ated by omposing all the node models in parallel, whilethe Groove model is generated by exhaustively applying allgraph transformations. The hoie of the node that willinstigate a ommuniation is modeled as a hoie betweenstohasti transitions. After a node X has been seleted,the hoie in step 1 of the protool (the peer seletion) is adisrete probabilisti hoie between the nodes in the view

of X. It is important to note that probabilisti hoies takeplae instantaneously and, beause of the maximal progressassumption, this prevents any other node from beomingative (i.e. �nishing its stohasti delay) before node X isdone with its ommuniation. The peer seletion is followedby another probabilisti hoie of the result of step 5 (prun-ing). After this, the model returns to a new stable state,where all nodes are waiting on their stohasti delays. Apartial example of a model with a single pruning hoie anbe seen on the left side of Figure 5.Sine all internal transitions are substituted by probabilis-ti hoie, there is no internal non-determinism left. We alsosee that all probabilisti transitions are delay-guarded1 . Thismeans that the models an be transformed into CTMCs asin [9℄. The main priniple of this transformation is thata Markovian delay (e.g. with rate �) followed by a prob-abilisti hoie (e.g. between two transitions, one havingprobability 13 , the other having probability 23 ) is stohasti-ally equivalent to a hoie between Markovian transitionssuh that the rate of the original Markovian transition isdistributed over the new Markovian transitions aordingto the probabilisti hoie (in our example we get Marko-vian transitions with rates 13� and 23� respetively). Thestate-labels of the �CRL and Groove models are preservedin the resulting labeled CTMCs. Eah label desribes a on-�guration of the gossiping network.In pratie the transformation from �CRL or Groovemodel to CTMC means that every sequene of wait (stohas-ti delay), peer selet (probabilisti hoie) and view selet(probabilisti hoie) transitions is replaed with a groupof stohasti delay transitions by distributing the stohastidelay of the wait transition over the probabilisti distribu-tions of subsequent transitions. A partial example of thistransformation an be seen in Figure 5.
5.2 From CTMC to MRMWe now have a labeled CTMC with eah of its states la-beled with a direted graph representing the state of thegossiping network. We now ompute for eah state in theCTMC, using standard algorithms from graph theory, sev-eral measures of the graph assoiated with the state: thevariane of the indegree of eah of the nodes, the averageshortest path length between all ombinations of di�erentnodes and the lustering oeÆient [10℄. This gives us threeMRMs where the reward struture � is the indegree variane,average shortest path or lustering oeÆient respetively.The indegree variane is a measure on the distribution ofindegrees in the network. In a perfetly balaned networkall indegrees would be equal and the variane therefore 0.The higher the variane the more unbalaned the networkis, whih is undesirable. A low average shortest path lengthis desirable sine this will redue transmission times. And�nally the lustering oeÆient measures the amount of in-teronnetions between the neighbors of any node. Highvalues for this oeÆient mean that the nodes form lusterswhih unbalanes the network and is therefore undesirable.
5.3 From MRM to resultsObtaining the results onsists of two steps. First, usingthe transient and steady state analysis tools from the CADPtoolset [7℄, we ompute the probability to reside in eah state1A delay-guarded probabilisti transition is (eventually) pre-eded by a stohasti transition. See [9℄ for more details
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Figure 5: Example of the transformation of part of a �CRL/Groove model to a CTMC.at ertain time points and on the long run. This an be doneone for the CTMC obtained after removing all labels. Theintermediate result is lumped, using rate-preserving branh-ing bisimulation minimalization.Next, we model-hek eah MRM separately, using the ex-tension to CSRL �rst suggested in [1℄. We have implementedthis extension using the extensible XTL model-heker ofthe CADP tool-set [12℄. The CSRL extension is also sup-ported by the PRISM model heker [11℄. This extension toCSRL provides us with both instantaneous rewards, i.e. theexpeted value of one of the measures at some time point,as well as the long run reward rate, i.e. the expeted averagevalue of the measures in the long run.

5.4 ComplexityWe now onsider the omplexity of our analysis method.We �rst notie that the state-spae of the models, from�CRL or Groove to MRM, is bounded by the di�erent possi-ble network on�gurations (times a onstant fator beauseof the internal states), taken modulo isomorphism in the aseof Groove. For a gossiping network with N nodes and view-size (or onstant out-degree) C we �nd „ N � 1C «N di�er-ent on�gurations: eah node has C out of N � 1 peers inits view („ N � 1C « possibilities) and there are of ourse Ndi�erent nodes. We disregard the possibility of nodes havinga view smaller than the maximum view-size sine we on-sider only models where all nodes start with maximum a-paity views. Now eah state is labeled with a direted graphrepresenting the network. To alulate the graph measureswe need to ompute the shortest path length for all ombi-nations of nodes. This is done by using Dijkstra's shortestpath algorithm whih has a omplexity of N2. Calulatingthe other two measures osts less time. For meaningful val-ues of N this alulation is dominated however by the needto alulate steady-state results for the resulting MRM. Theomplexity of this operation is x3 where x is the number ofstates in the model2. Overall we then �nd a time omplexityof O( „ N � 1C «N!3).For the ase of Groove, due to symmetry redution thestate spae is (muh) smaller, but we know of no analytialway to predit the e�etive redution. Note, however, thatevery on�guration of a network of size N , interpreted upto isomorphism, an represent at most N ! di�erent \plain"on�gurations. This provides an upper bound to the de-2We disregard here the possibility of iterative algorithms,for whih the omplexity depends on the desired auray.

gree of symmetry redution. In Table 1 we ompare thealulated number of \plain" on�gurations (P ) with thesimulated number of on�gurations modulo symmetry (S),insofar we have been able to ompute the latter. The re-dution (P=S) is learly large (in fat, the reader an hekthat it approahes the maximal redution of N ! to more than95%), but equally learly, the size of the redued state spaeis still more than linear exponential in the network size, andso the problem is intratable even for small network sizes.
6. RESULTSIn this setion we give the results of our analysis. We startby giving the long-run averages for indegree variane (IV),average shortest path length (PL) and lustering oeÆient(CC). We then present graphs showing the expeted evo-lution of these measures and ompare the results with theonlusion found in [10℄.
6.1 Long-run averagesTable 2 gives the long run average results for gossipingnetworks for the three di�erent transmission poliies pull,push and pull-push (marked \both" in the table), for di�er-ent network and view sizes. Moreover, the table also indi-ates the size of the models in �CRL and Groove. The ratiobetween these two numbers is similar to the potential redu-tion predited in Table 1. Note that for N = 7 we were notable to ompute the �CRL models; with Groove we ouldgenerate up to network size 7, but the results ould not beanalyzed. We onlude from these results that, aross theboard, pull-push is the best transmission poliy, followedlosely by push, while pull is muh worse than the others.Note that this orresponds to the �ndings of [10℄.Another observation is that the number of reahable (sta-ble) network on�gurations (modulo isomorphism) is almostalways equal to the total number of on�gurations aord-ing to Table 1, exept for the push poliy for N = 6; 7 andC = 2, where apparently a very few on�gurations are notreahable. We have not analyzed this further.A very interesting set of results emerges for N = 6 andC = 2. For the push and the pull-push strategies we see thaton the long run the network will have an indegree varianeof 0, a relatively high path length of 3.33 and a lusteringoeÆient of 1. For pull, a similar e�et ours, but in thisase the indegree variane is rather large, instead of 0.The reason for these values is that (for push and pull-push strategies with N = 6 and C = 2) a gossiping networkwill always eventually partition into a on�guration on-sisting of two fully onneted groups of 3 nodes, shown inFigure 6 (left). This indeed has IV = 0, CC = 1 and averagePL = 3 13 . There is no way for the network to reover from
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C = 2 C = 3 C = 4 C = 5N Plain (P ) Sym. (S) P=S P S P=S P S P=S P S P=S4 81 6 145 7776 79 98 1024 13 796 1.0�106 1499 667 1.0�106 1499 667 15625 40 3917 1.7�108 35317 4838 1.3�109 257290 4975 1.7�108 35317 4838 279936 100 27998 3.8�1010 967255 39103 2.3�1012 { { 2.3�1012 { { 3.8�1012 { {Table 1: Network on�guration ounts and symmetry redution for various network and view sizes.N C Poliy IV PL CC Full state spae Stable�CRL Groove Groove4 2 Pull 1.50 1.38 1.00 981 87 64 2 Push 1.03 1.16 0.79 945 80 64 2 Both 0.94 1.14 0.77 1989 96 65 2 Pull 2.93 2.16 1.00 121176 2006 795 2 Push 1.51 1.67 0.68 117936 1850 795 2 Both 1.53 1.63 0.64 408456 2064 795 3 Pull 2.40 1.48 1.00 16144 338 135 3 Push 1.15 1.07 0.81 17984 321 135 3 Both 1.02 1.05 0.79 39184 419 136 2 Pull 4.31 1.00 3.00 1.9�107 56843 14996 2 Push 0.00 1.00 3.33 1.8�107 56843 14986 2 Both 0.00 1.00 3.33 8.2�107 64389 14996 3 Pull 4.75 2.28 1.00 2.4�107 56843 14996 3 Push 2.02 1.39 0.70 2.3�107 56843 14996 3 Both 1.83 1.35 0.67 9.5�107 64389 14996 4 Pull 3.33 1.56 1.00 403075 1307 406 4 Push 1.15 1.02 0.83 386125 1247 406 4 Both 0.99 1.01 0.82 858475 1604 407 2 Pull { { { { 1515526 353177 2 Push { { { { 1405080 353147 2 Both { { { { 1429880 35317Table 2: Long run average results for gossiping networks with N nodes and view size C; IV= Indegree Variane,PL = average shortest Path Length, and CC = Clustering CoeÆient. Additionally the size (number of stablestates) of the �CRL and Groove models is given.
Figure 6: Degenerate network on�gurations: noneof the strategies an reover from the left hand side,and pull annot reover from the right hand side.this situation. We expet to see a long-run partitioning forany gossiping network where N � 2(C + 1). However, thetransient analysis will show that it usually takes a long timefor a network to partition. For the pull poliy, the righthand on�guration of Figure 6 (whih is a star topology interms of [10℄), together with other star on�gurations, forma similar \trap", but this time with a very high indegreevariane (IV = 4:5 for the on�guration shown).

6.2 Transient resultsFigures 7-11 show the evolution of the values of the dif-ferent measures over time. A single time unit orrespondsto the expeted time a node will take to exeute its ativethread one.From Figures 7-9 we an see that the networks of size5 stabilize fairly quikly. Figures 10 and 11 look at thebehavior of networks of varying view size and network size,respetively, under the \winning" pull-push strategy. Here,we an see that the shape of the funtion for the networkof size 6 with view size 2 is di�erent from the others: theindegree variane of this network (depited in Figure 10) �rstseemingly stabilizes, but then slowly drops towards zero. Forthe lustering oeÆient we see the same e�et: at �rst itappears to stabilize before it rises to 1 (as shown by thesteady-state analysis). Both e�ets are due to the fat thatthe network will eventually reah, with probability 1, theon�guration of Figure 6 (left). It is also lear, however,that on average it takes a relatively long time for gossipingnetworks to reah this degenerate state.
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6.3 TraceabilityAn interesting aspet of formal methods is that they aretraeable. This means that when we �nd a model whihbehaves in a spei� way we an asertain why it behavesin suh a way. We take as an example the pull poliy forgossiping protools. In [10℄ it is reasoned that this is a poorpoliy sine suh gossiping networks revert to a star topol-
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N=6 C=2Figure 11: Clustering oeÆient graph for networkswith varying sizes with pull-push strategy.ogy. This happens when a node has no more inoming links.No other node then onnets to it, so no one an pull theidentity of this node. In other words, a new link to the nodeannot be established and the node will forever have no in-oming links. With a push poliy this is not the ase, as anode will push its own identity to other nodes in the net-work. Figure 12 (left) is the MRM generated in the analysisof a Groove model of a network with N = 4 and C = 2 usingthe pull poliy. We an learly see the detrimental behaviorof the pull protool. When the network reahes the left-most state it an never leave it again. The \star" topologyhere is formed by the 3 totally onneted nodes (the enterof the star) and the upper-left node with no inoming links(the single point of the star). In ontrast, the MRM modelof a 4-node network using the push poliy, depited on theright hand side, does not show any sink states and does notonverge to a star topology.

7. FUTURE WORKSine this paper is meant as a �rst exploration of thepratiality of using formal methods to analyze gossipingnetworks there is a lot of room for further researh.The use of stohasti delays and disrete probabilistihoie has not yet been formally inorporated in the �CRLand Groove formalisms. Based on our experienes in mod-
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Figure 12: Lumped MRMs of a gossiping network with 4 nodes, view size 2 and pull (left-hand side) andpush (right-hand side) poliy. The transmission rate of eah node is �. The reward struture represents theindegree variane of the gossiping network. The states are labeled with graph on�gurations (The bottomstate in fat represents two states with bisimilar behaviors but di�erent graph on�gurations).eling gossiping networks we do not foresee any major theo-retial diÆulties in inorporating stohastis in �CRL andGroove. It is important to develop this theory further asthis will also allow other interesting stohasti systems be-sides gossiping networks to be modeled using these powerfulformalisms.The design spae for gossiping networks is quite large.In [10℄, various strategies for peer seletion, view seletion aswell as the di�erent peer-exhange poliies have been stud-ied. In the future, we plan to model and analyze gossipingnetworks with peer and view seletion strategies other thanpurely random ones. This requires us to model the age of thelinks in the gossiping networks. This an be easily modeledusing the omplex data types of �CRL, where the seletionstrategies are parameterized by a prediate (f. Setion 4.2).However, our initial experiments soon presented a new hal-lenge, as the age of the links may be unbounded, leading toin�nite models. A �rst approah to dealing with this prob-lem would be to investigate the mehanism used in atualimplementations of gossiping networks. Another logial ap-proah is to use some form of abstration to model the age

of the links.Another aspet of gossiping networks that is very impor-tant to investigate in the future is dynamially appearingand disappearing nodes as disussed in [10℄. The modelingof systems that an grow larger and smaller over time is no-toriously diÆult with lassial proess algebras, but speialmobile formalisms exist, suh as the �-alulus (see [13℄). Inthe graph transformation approah of Groove, on the otherhand, it should be easy to inorporate this type of behavior.Regarding the type of analysis we have done, with hind-sight we an observe that the long-run values do not giveinteresting measures. As disussed in Setion 6, we onje-ture that real-life networks, whose size far exeeds the viewsize, will always tend to partition, giving rise to atypiallong-run averages. It is more interesting to investigate ques-tions of the type \how long will it take until the networkpartitions with a probability of x", where the desired prob-ability x is a parameter. Our method in priniple allows toanswer this type of question.As expeted, we onlude that salability is a real problemwhen formally modeling gossiping networks. Modeling net-
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works with more that six nodes turns out to be pratiallyimpossible using �CRL. Although using Groove's in-builtsymmetry redution allows us to analyze larger networksthe size of the models still grows exponentially, limiting theapproah to 7 nodes. Furthermore the modeling of moreadvaned ommuniation protools with omplex peer andview seletion strategies would ause the models to beomeeven larger. It is then obvious to look for abstration teh-niques to ounter this state spae explosion. Large networksould be takled by only modeling a small amount of nodesexpliitly and modeling the rest of the nodes as a singleentity behaving aording to some average expeted behav-ior. The problem of representing the age of links ould behandled with a form of prediate abstration: instead of de-noting the ages of the links expliitly the model ould simplylist the order of the ages. Many other abstration tehniquesare of ourse oneivable.
8. CONCLUSIONGossiping networks an be analyzed using formal meth-ods. The struture of a network an be aptured by usingthe abstrat datatypes of �CRL. Alternatively, the hangesin the network an be aptured by the graph transforma-tions of Groove, whih models the network simply as a di-reted graph. Furthermore, the ombination of onurrent,probabilisti and stohasti behavior an be interpreted asa CTMC in the style of the MLotos proess algebra (see[9℄), although the theory behind the transformation of �CRLand Groove to labeled CTMCs needs further researh. The�CRL and Groove models an then be interpreted as aCTMC labeled with network strutures. By alulating in-teresting graph-measures for these network strutures wethen obtain MRM models whih an be analyzed using anextension to CSRL (see [1, 11℄).It was partiularly interesting for us to observe the devi-ation in the results that ours for networks of size 6, withview size 2, beause we had not predited or expeted this.The explanation of this phenomenon, viz. that on the longrun, networks with a ertain ratio of size to view size tend topartition, implies that other types of analysis may be alledfor.Muh researh remains to be done in this area (see Se-tion 7). It is desirable, but also hallenging, to model moreadvaned gossiping protools. Studying larger networks, bymeans of some form of abstration is also a promising avenueof researh. Simply abstrating from node identities (thusonly onsidering the shape of a network) by using symmetryredution with Groove already provided great redutions instate spae size, but not suÆient for salability.The main drawbak to the preise expliit approah is thelak of salability. In pratie, we were only able to gener-ate models of up to 6 nodes using �CRL or up to 7 nodesusing Groove. However, the results found for these smallmodels on�rm the simulation and emulation results foundin [10℄, suggesting that small-sale analysis an lead to in-sights in the behavior of large-sale networks. Furthermore,the traeability of the models an give a deeper understand-ing of the emergent behavior of a gossiping network.
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